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VERY ACCURATE UPWARD CONTINUATION TO LOW HEIGHTS

IN A TEST OF NON-NEWTONIAN THEORY
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Abstract

Recently, gravity measurements were made on a tall, very stable televsion
transmitting tower in order to detect a non-Newtonian gravitational force.

This experiment required the upward continuation of gravity from the Earth's

surface to points as high as only 600 m above ground. The upward

continuation was based on a set of gravity anomalies in the vicinity of the

tower whose data distribution exhibits essential circular symmetry and

appropriate radial attenuation. Two methods were applied to perform the

upward continuation - least-squares solution of a local harmonic expansion

and least-squares collocation. Both methods yield comparable results, and

have estimated accuracies on the order of 50 #Gal or better (I #Gal = 10-8
m/s2). This order of accuracy is commensurate with the tower gravity

measurements (which have an estimated accuracy of 20 #Gal), and enabled a
definitive detection of non-Newtonian gravity. As expected, such precise

upward continuations require very dense data near the tower. Less expected

was the requirement of data (though sparse) up to 220 km away from the tower

(in the case that only an ellipsoidal reference gravity is applied).

I. INTRODUCTION

The upward continuation may be summarized as follows. A set of surface

gravity anomalies, circularly symmetric about the tower, serves as the set

of boundary values. The upward continuation is based on Newtonian theory

either through a local harmonic series expansion of the potential or through

the use of least-squares collocation. At altitude, the (upward continued)

GRS67 normal gravity and attraction of the atmospheric layer are added to

the upward continued gravity anomaly. The result is the total gravity as

would be observed in a strictly Newtonian world. A comparison with the

gravity directly observed using a gravimeter offers a test of the underlying
theory.

2. THE MATHEMATICS OF UPWARD CONTINUATION

If V denotes the earth's gravitational potential, then under Newtonian

potential theory, V satisfies Laplace's differential equation in free space:

V2V = O. (I)

One solution to Laplace's equation (I) is a Fourier-Bessel series

expansion in cylindrical coordinates, which is appropriate for a local

representation of the potential. Thus, since in the planar approximation

the gravity anomaly is also a harmonic function (it satisfies Laplace's

equation in free space), it may be expressed as the following series (Morse

and Feshbach, 1953, pp. 1259-1262):

Ag(p,_,z) = Z f Cn(k) Jn(kP) e-kz-inOdk,
n=-m 0

where p is radial distance in the horizontal
altitude. Jn is the Besse] function of the

(2)

plane, 0 is azimuth, and z is
first kind and n-th order, k is
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the wavenumberin the radial direction, and the Cn are coefficient functions
to be determined from gravity anomaly data. Since the final evaluation of
(2), once the Cn are known, is along the vertical, p=O, this problem is
simplified by defining an azimuthal average:

"-A-g(p,z) -_ (p,e,z) d8 : Jo(kP) e-kz dk . (3)

This average coincides with the unaveraged Ag along the vertical:

A"-g(O,z) = Ag(O,e,z) = foCO(k) e -kz dk . (4)

The second equality in (4) follows by noting that at p=O all Jn's in (2) are

zero except Jo which is one. It remains, therefore, to determine only the
function CO from azimuthally averaged gravity anomaly data. One can

determine at best a finite set of values of CO from a discrete and finite

data set. The integral (3), therefore, is truncated to some finite limit

and discretized. The truncation is optimized if the discretization is in

the form of a Fourier-Bessel expansion. After making the appropriate

substitutions in replacing the integral (3) with the discrete summation (see

Romaides et al., 1988), the least-squares solution is obtained by the
following:

P[ M ]fp- _ Am Jo(_p,m ) expC-_m-_m(Zp- Zo))
p=l m=l

--> min., (5)

where P is the number of points, M is the number of zeros, (m are the zeros
of Jo, fD = Ag(_DR,SD,zD) - A-g(R,z), _D = p/R, R is the maximum radius of

surface data, zo_ ZD _re the elevat]ons of the tower base and surface
points, and Am are the solution coefficients.

The Fourier-Bessel upward continuation then proceeds in three steps. An
initial expansion is done using 23 zeros and approximately 1800 anomalies
out to 220 km from the tower. This expansion allows the resolution of
half-wavelengths down to about 5 km. A second expansion is then done on
only the residuals inside of 5 km (from the tower) allowing resolution of
half-wavelengths down to about 100 m. And finally a third expansion is done
on the second set of residuals inside of 50 m from the tower resolving half-
wavelengths down to about 20 m. Table I shows the results of the three
steps, and Figure I is a contour map of the final set of residuals.

The other upward continuation method used is least-squares collocation

which is an optimal estimation method based on the validity of Laplace's

equation. All important in LSC estimation is a good representation of the

covariance function of Earth's anomalous gravity field. The covariance
model employed for the tower experiment consists of the actual degree

variances of the Rapp-1981 field up to degree 30 (1300 km wavelengths) plus

a sum of 9 reciprocal distance models (see Jekeli, 1984) each covering a

specific band of wavelengths shorter than 1300 km. These models are fitted

to a sequence of periodograms based on the gravity anomaly data. Figure 2

shows these periodograms along with the power spectral density of the final
model. The model psd at wavelengths shorter than 300 m represents a rough
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_extrapolation. Figure 3 shows a plot of the collocation weights that are
applied to ~270 data points; note the increase in the last two sets of
weights which could be an artifact of oversampling.

3. CONCLUSION

The upward continuation of the surface gravity anomalies was done using

two independent computation methods. The two methods are in excellent

agreement (see Table 2) with both results clearly showing a departure from

the inverse-square law. The conclusion is that there is a dominantly
attractive non-Newtonian component to gravity. Previous experiments had

indicated a repulsive component to gravity. This inconsistency can be

overcome by postulating the existence of two additional forces, one

attractive and one repulsive. Our data do not contain adequate resolution

to distinguish between the one force (scalar) and two force (scalar-vector)

models but are consistent with both. Figures 4 and 5 show plots of the two

models along with our data. The error bars used are those of the first
method.
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Table I. Table 2.

FOURIER-BESSEL UPWARD CONTINUATION OBSERVED MINUS PREDICTED (#Gal)

ELEVATION STEP 1 STEP 2 STEP 3

0.69 .422 .266 .009
7.58 .256 .116 .002
9.38 .233 .098 .008

23.07 .094 -.013 -.013
45.93 -.054 -.121 -.098
68.76 -.159 -.196 -.176
93.92 -.187 -.199 -.184

192.17 -.341 -.306 -.301
283.58 -.455 -.414 -.412
379.54 -.534 -.499 -.498
473.24 -.567 -.541 -.540
562.27 -.566 -.548 -.547

ELEVATION METH 1 ERROR METH 2 ERROR

0.69 9 59 35 9
7.58 2 59 -2 13
9.38 8 59 0 16

23.07 -13 58 -27 36
45.93 -98 57 -100 61
68.76 -176 56 -171 80
93.92 -184 54 -179 95

192.17 -301 48 -304 117
283.58 -412 44 -413 120
379.54 -498 38 -493 120
473.24 -540 37 -528 121
562.27 -547 36 -526 121
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RESIDUAL ANOMALIES
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